3.7.77 \(\int \frac {(d+e x)^{5/2}}{(f+g x)^2 (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [677]

3.7.77.1 Optimal result
3.7.77.2 Mathematica [A] (verified)
3.7.77.3 Rubi [A] (verified)
3.7.77.4 Maple [A] (verified)
3.7.77.5 Fricas [B] (verification not implemented)
3.7.77.6 Sympy [F(-1)]
3.7.77.7 Maxima [F]
3.7.77.8 Giac [B] (verification not implemented)
3.7.77.9 Mupad [F(-1)]

3.7.77.1 Optimal result

Integrand size = 46, antiderivative size = 268 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {10 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {5 c d g^{3/2} \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{(c d f-a e g)^{7/2}} \]

output
-2/3*(e*x+d)^(3/2)/(-a*e*g+c*d*f)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2 
)^(3/2)+5*c*d*g^(3/2)*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/ 
2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/(-a*e*g+c*d*f)^(7/2)+10/3*g*(e*x+d) 
^(1/2)/(-a*e*g+c*d*f)^2/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+5* 
g^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^3/(g*x+f)/(e*x+ 
d)^(1/2)
 
3.7.77.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.67 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {(d+e x)^{3/2} \left (\sqrt {c d f-a e g} \left (3 a^2 e^2 g^2+2 a c d e g (7 f+10 g x)+c^2 d^2 \left (-2 f^2+10 f g x+15 g^2 x^2\right )\right )+15 c d g^{3/2} (a e+c d x)^{3/2} (f+g x) \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{3 (c d f-a e g)^{7/2} ((a e+c d x) (d+e x))^{3/2} (f+g x)} \]

input
Integrate[(d + e*x)^(5/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e* 
x^2)^(5/2)),x]
 
output
((d + e*x)^(3/2)*(Sqrt[c*d*f - a*e*g]*(3*a^2*e^2*g^2 + 2*a*c*d*e*g*(7*f + 
10*g*x) + c^2*d^2*(-2*f^2 + 10*f*g*x + 15*g^2*x^2)) + 15*c*d*g^(3/2)*(a*e 
+ c*d*x)^(3/2)*(f + g*x)*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a 
*e*g]]))/(3*(c*d*f - a*e*g)^(7/2)*((a*e + c*d*x)*(d + e*x))^(3/2)*(f + g*x 
))
 
3.7.77.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.10, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.109, Rules used = {1252, 1252, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1252

\(\displaystyle -\frac {5 g \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}dx}{3 (c d f-a e g)}-\frac {2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}\)

\(\Big \downarrow \) 1252

\(\displaystyle -\frac {5 g \left (-\frac {3 g \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\right )}{3 (c d f-a e g)}-\frac {2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}\)

\(\Big \downarrow \) 1254

\(\displaystyle -\frac {5 g \left (-\frac {3 g \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\right )}{3 (c d f-a e g)}-\frac {2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}\)

\(\Big \downarrow \) 1255

\(\displaystyle -\frac {5 g \left (-\frac {3 g \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\right )}{3 (c d f-a e g)}-\frac {2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {5 g \left (-\frac {3 g \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\right )}{3 (c d f-a e g)}-\frac {2 (d+e x)^{3/2}}{3 (f+g x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}\)

input
Int[(d + e*x)^(5/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^( 
5/2)),x]
 
output
(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)*(a*d*e + (c*d^2 + a*e^2) 
*x + c*d*e*x^2)^(3/2)) - (5*g*((-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*(f + g* 
x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (3*g*(Sqrt[a*d*e + (c*d^ 
2 + a*e^2)*x + c*d*e*x^2]/((c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) + (c*d 
*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f 
- a*e*g]*Sqrt[d + e*x])])/(Sqrt[g]*(c*d*f - a*e*g)^(3/2))))/(c*d*f - a*e*g 
)))/(3*(c*d*f - a*e*g))
 

3.7.77.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1252
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d + e*x)^(m - 1)*(f + g*x)^(n 
+ 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(c*e*f + c*d*g - b*e*g))), x] + Si 
mp[e^2*g*((m - n - 2)/((p + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^(m 
 - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e 
, f, g, n}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[p, 
-1] && RationalQ[n]
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.7.77.4 Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.54

method result size
default \(\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) \sqrt {c d x +a e}\, c^{2} d^{2} g^{3} x^{2}+15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a c d e \,g^{3} x \sqrt {c d x +a e}+15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) \sqrt {c d x +a e}\, c^{2} d^{2} f \,g^{2} x +15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a c d e f \,g^{2} \sqrt {c d x +a e}-15 \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} g^{2} x^{2}-20 \sqrt {\left (a e g -c d f \right ) g}\, a c d e \,g^{2} x -10 \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f g x -3 \sqrt {\left (a e g -c d f \right ) g}\, a^{2} e^{2} g^{2}-14 \sqrt {\left (a e g -c d f \right ) g}\, a c d e f g +2 \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f^{2}\right )}{3 \sqrt {e x +d}\, \left (c d x +a e \right )^{2} \left (a e g -c d f \right )^{3} \left (g x +f \right ) \sqrt {\left (a e g -c d f \right ) g}}\) \(414\)

input
int((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,meth 
od=_RETURNVERBOSE)
 
output
1/3*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*(c*d*x+a*e)^(1/2)*c^2*d^2*g^3*x^2+15*arctanh(g*(c*d*x+a*e)^ 
(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*g^3*x*(c*d*x+a*e)^(1/2)+15*arctanh( 
g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*e)^(1/2)*c^2*d^2*f*g 
^2*x+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*f*g^2 
*(c*d*x+a*e)^(1/2)-15*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*g^2*x^2-20*((a*e*g-c 
*d*f)*g)^(1/2)*a*c*d*e*g^2*x-10*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*f*g*x-3*(( 
a*e*g-c*d*f)*g)^(1/2)*a^2*e^2*g^2-14*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*f*g+2 
*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*f^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^2/(a*e*g-c 
*d*f)^3/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)
 
3.7.77.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 932 vs. \(2 (240) = 480\).

Time = 0.63 (sec) , antiderivative size = 1907, normalized size of antiderivative = 7.12 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2), 
x, algorithm="fricas")
 
output
[-1/6*(15*(c^3*d^3*e*g^2*x^4 + a^2*c*d^2*e^2*f*g + (c^3*d^3*e*f*g + (c^3*d 
^4 + 2*a*c^2*d^2*e^2)*g^2)*x^3 + ((c^3*d^4 + 2*a*c^2*d^2*e^2)*f*g + (2*a*c 
^2*d^3*e + a^2*c*d*e^3)*g^2)*x^2 + (a^2*c*d^2*e^2*g^2 + (2*a*c^2*d^3*e + a 
^2*c*d*e^3)*f*g)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 
 2*a*d*e*g - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g) 
*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g)) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)* 
x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2*(15*c^2*d^2*g^2*x^2 - 2*c^2*d^2*f^ 
2 + 14*a*c*d*e*f*g + 3*a^2*e^2*g^2 + 10*(c^2*d^2*f*g + 2*a*c*d*e*g^2)*x)*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^3*d^4*e^2 
*f^4 - 3*a^3*c^2*d^3*e^3*f^3*g + 3*a^4*c*d^2*e^4*f^2*g^2 - a^5*d*e^5*f*g^3 
 + (c^5*d^5*e*f^3*g - 3*a*c^4*d^4*e^2*f^2*g^2 + 3*a^2*c^3*d^3*e^3*f*g^3 - 
a^3*c^2*d^2*e^4*g^4)*x^4 + (c^5*d^5*e*f^4 + (c^5*d^6 - a*c^4*d^4*e^2)*f^3* 
g - 3*(a*c^4*d^5*e + a^2*c^3*d^3*e^3)*f^2*g^2 + (3*a^2*c^3*d^4*e^2 + 5*a^3 
*c^2*d^2*e^4)*f*g^3 - (a^3*c^2*d^3*e^3 + 2*a^4*c*d*e^5)*g^4)*x^3 + ((c^5*d 
^6 + 2*a*c^4*d^4*e^2)*f^4 - (a*c^4*d^5*e + 5*a^2*c^3*d^3*e^3)*f^3*g - 3*(a 
^2*c^3*d^4*e^2 - a^3*c^2*d^2*e^4)*f^2*g^2 + (5*a^3*c^2*d^3*e^3 + a^4*c*d*e 
^5)*f*g^3 - (2*a^4*c*d^2*e^4 + a^5*e^6)*g^4)*x^2 - (a^5*d*e^5*g^4 - (2*a*c 
^4*d^5*e + a^2*c^3*d^3*e^3)*f^4 + (5*a^2*c^3*d^4*e^2 + 3*a^3*c^2*d^2*e^4)* 
f^3*g - 3*(a^3*c^2*d^3*e^3 + a^4*c*d*e^5)*f^2*g^2 - (a^4*c*d^2*e^4 - a^5*e 
^6)*f*g^3)*x), 1/3*(15*(c^3*d^3*e*g^2*x^4 + a^2*c*d^2*e^2*f*g + (c^3*d^...
 
3.7.77.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate((e*x+d)**(5/2)/(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)** 
(5/2),x)
 
output
Timed out
 
3.7.77.7 Maxima [F]

\[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {5}{2}}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}} {\left (g x + f\right )}^{2}} \,d x } \]

input
integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2), 
x, algorithm="maxima")
 
output
integrate((e*x + d)^(5/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*( 
g*x + f)^2), x)
 
3.7.77.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1404 vs. \(2 (240) = 480\).

Time = 0.64 (sec) , antiderivative size = 1404, normalized size of antiderivative = 5.24 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((e*x+d)^(5/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2), 
x, algorithm="giac")
 
output
1/3*(3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c*d*g^2/((c^3*d^3*e^2*f^3*a 
bs(e) - 3*a*c^2*d^2*e^3*f^2*g*abs(e) + 3*a^2*c*d*e^4*f*g^2*abs(e) - a^3*e^ 
5*g^3*abs(e))*(c*d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g 
)) + 15*c*d*g^2*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d 
*f*g - a*e*g^2)*e))/((c^3*d^3*e^2*f^3*abs(e) - 3*a*c^2*d^2*e^3*f^2*g*abs(e 
) + 3*a^2*c*d*e^4*f*g^2*abs(e) - a^3*e^5*g^3*abs(e))*sqrt(c*d*f*g - a*e*g^ 
2)*e) - 2*(c^2*d^2*e^2*f - a*c*d*e^3*g - 6*((e*x + d)*c*d*e - c*d^2*e + a* 
e^3)*c*d*g)/((c^3*d^3*e^2*f^3*abs(e) - 3*a*c^2*d^2*e^3*f^2*g*abs(e) + 3*a^ 
2*c*d*e^4*f*g^2*abs(e) - a^3*e^5*g^3*abs(e))*((e*x + d)*c*d*e - c*d^2*e + 
a*e^3)^(3/2)))*e^4 - 1/3*(15*sqrt(-c*d^2*e + a*e^3)*c^2*d^3*e^2*f*g^2*arct 
an(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*sqrt(-c*d^2* 
e + a*e^3)*a*c*d*e^4*f*g^2*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - 
 a*e*g^2)*e)) - 15*sqrt(-c*d^2*e + a*e^3)*c^2*d^4*e*g^3*arctan(sqrt(-c*d^2 
*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 15*sqrt(-c*d^2*e + a*e^3)*a*c 
*d^2*e^3*g^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) 
+ 2*sqrt(c*d*f*g - a*e*g^2)*c^2*d^2*e^4*f^2 + 10*sqrt(c*d*f*g - a*e*g^2)*c 
^2*d^3*e^3*f*g - 14*sqrt(c*d*f*g - a*e*g^2)*a*c*d*e^5*f*g - 15*sqrt(c*d*f* 
g - a*e*g^2)*c^2*d^4*e^2*g^2 + 20*sqrt(c*d*f*g - a*e*g^2)*a*c*d^2*e^4*g^2 
- 3*sqrt(c*d*f*g - a*e*g^2)*a^2*e^6*g^2)/(sqrt(-c*d^2*e + a*e^3)*sqrt(c*d* 
f*g - a*e*g^2)*c^4*d^5*e*f^4*abs(e) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f...
 
3.7.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{5/2}}{{\left (f+g\,x\right )}^2\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}} \,d x \]

input
int((d + e*x)^(5/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^( 
5/2)),x)
 
output
int((d + e*x)^(5/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^( 
5/2)), x)